Engineering of large cartilaginous tissues through the use of microchanneled hydrogels and rotational culture.

نویسندگان

  • Conor T Buckley
  • Stephen D Thorpe
  • Daniel J Kelly
چکیده

The development of functional engineered cartilaginous tissues of sufficient size that can be used clinically to treat large defects remains a major and significant challenge. This study investigated if the introduction of microchannels into chondrocyte-seeded agarose hydrogels would result in the formation of a superior and more homogenous cartilaginous tissue as a result of enhanced nutrient transport. Microchanneled construct cylinders were fabricated via a molding process utilizing a pillared structure to create the required architecture. Constructs were subjected to either constant rotation in a rotational bioreactor system or free-swelling conditions. After 28 days of free-swelling culture the presence of microchannels did not enhance glycosaminoglycan accumulation within the core of the construct compared to solid constructs (0.317 +/- 0.002% w/w vs. 0.401 +/- 0.020% w/w). However, under dynamically rotating conditions, glycosaminoglycan accumulation in the cores (1.165 +/- 0.132% w/w) of microchannel constructs were similar to that in the periphery (1.23 +/- 0.074% w/w) of solid constructs, although still significantly lower than their corresponding periphery (1.64 +/- 0.133% w/w) after 28 days. These results confirm that cellular nutrient consumption is primarily responsible for creating the spatial gradients in molecules regulating the biosynthetic activity of chondrocytes through the volume of hydrogels, and that changing the scaffold architecture alone may have little effect while the inherent diffusivity of the material remains high. Rather, a combination of forced convection and modified scaffold architecture is necessary to engineer large cartilaginous tissues in vitro.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Altering the Architecture of Tissue Engineered Hypertrophic Cartilaginous Grafts Facilitates Vascularisation and Accelerates Mineralisation

Cartilaginous tissues engineered using mesenchymal stem cells (MSCs) can be leveraged to generate bone in vivo by executing an endochondral program, leading to increased interest in the use of such hypertrophic grafts for the regeneration of osseous defects. During normal skeletogenesis, canals within the developing hypertrophic cartilage play a key role in facilitating endochondral ossificatio...

متن کامل

Composition-function relations of cartilaginous tissues engineered from chondrocytes and mesenchymal stem cells isolated from bone marrow and infrapatellar fat pad.

The objective of this study was to determine the functional properties of cartilaginous tissues generated by porcine MSCs isolated from different tissue sources, and to compare these properties to those derived from chondrocytes (CCs). MSCs were isolated from bone marrow (BM) and infrapatellar fat pad (FP), while CCs were harvested from the articular surface of the femoro-patellar joint. Cultur...

متن کامل

A comparison of self-assembly and hydrogel encapsulation as a means to engineer functional cartilaginous grafts using culture expanded chondrocytes.

Despite an increased interest in the use of hydrogel encapsulation and cellular self-assembly (often termed "self-aggregating" or "scaffold-free" approaches) for tissue-engineering applications, to the best of our knowledge, no study to date has been undertaken to directly compare both approaches for generating functional cartilaginous grafts. The objective of this study was to directly compare...

متن کامل

Engineering cartilage or endochondral bone: a comparison of different naturally derived hydrogels.

Cartilaginous tissues engineered using mesenchymal stem cells (MSCs) have been shown to generate bone in vivo by executing an endochondral programme. This may hinder the use of MSCs for articular cartilage regeneration, but opens the possibility of using engineered cartilaginous tissues for large bone defect repair. Hydrogels may be an attractive tool in the scaling-up of such tissue engineered...

متن کامل

Cartilaginous Tissues Engineered Using Chondrocytes and Bone Marrow Derived MSCs by a Combination of Rotational Culture and Modified Scaffold Architecture

Introduction Articular cartilage has a poor intrinsic capacity for repair. Bone marrow (BM) derived mesenchymal stem cells (MSCs) are an attractive cell type for use in cartilage tissue engineering due to their ease of expansion. A central challenge in tissue engineering is preventing core degradation. This challenge will be amplified if MSCs are to be used in the repair of large bone defects v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Tissue engineering. Part A

دوره 15 11  شماره 

صفحات  -

تاریخ انتشار 2009